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Abstract-Heat transfer to an attached falling film has been investigated. This problem is unique because 
both the film thickness (the hydrodynamics) and the temperature profile change with time and position. 
The original problem which has three independent variables, two in space and one in time, is reduced by a 
similarity transformation to a two dimensional parabolic problem. The equation was solved numerically 

with a digital computer for five cases of boundary conditions. 

NOMENCLATURE 

Biot number, hL/k, 
concentration; 
diffusivity of mass; 
gravitational constant; 
heat transfer coefficient ; 
conductivity; 
characteristic length, (v2/gPr)l13; 
Prandtl number, v/ix; 
heat flux per unit area; 
time; 
temperature; 
velocity component in x-direction; 
velocity component in y-direction ; 
distance from leading edge; 
dimensionless distance from leading 
edge, x/L; 
transverse coordinate. 

Subscripts 

i, temperatureat t = 0; 

0, temperature at x = 0. 

INTRODUCTION 

HEAT transfer to fluids in unsteady motion is of 
interest in start-up operations of many industrid 
processes. A class of such unsteady flows is 
a liquid film of some initial thickness draining off 
a vertical plate. The present work considers the 
problem of diffusion or heat transfer associated 
with such a flow. Applications of this problem 
can be found in rinsing of objects removed from 
an electroplating solution (diffusion), cooling by 
a shower which forms a liquid film on the object 
(heat transfer). Moreover, this problem may be 
regarded as a prototype to the more complex 
problem of dip coating, a process involving 
diffusion of the solvent with a simultaneous 

Greek symnots 
thermal diffusivity ; 

property change within the film. 

2 film thickness; 
dimensionless transverse coordinate, y/6 

PROBLEM STATEMENT 
?, 

6 dimensionless temperature, (T - To)/ 
(a) Fluid mechanics 

(q - T,); 
Consider a thin film of incompressible liquid 

2 
kinematic viscosity; 

draining down a vertical wall as depicted in 

transformation variable, r’/X; 
Fig. 1. The equation of motion for this film is 

$, 
dimensionless time, (g2/vPr)‘/3t; du au au a2u 
boundary layer coordinate. 

~+u;jr;+v&=vay2+g. (1) 
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For the case of thin films the left hand side of 
equation (1) representing inertial effects can be 
neglected for most practical purposes [l]. This 
resul’ts in an equation for creeping flow: 

where y is the transverse coordinate. This equa- 
tion was integrated by Jeffreys [2] with a no-slip 
condition at the wall and no shear at the free 
surface of the film to yield the following velocity 
profile : 

FIG. 1. Schematic of the coordinate system. 

2 

u=! by-Y 

V ( > 2 

where 6 denotes the film thickness. The varia- 
tion of film thickness with time was introduced 
by means of a mass balance on a film element, 
Ax, resulting in 

which upon integration yields the relationship 
for film thickness : 

(5) 

Equation (5) may now be substituted into 
equation (3) to yield a relationship for the velocity 
profile as a function of the three independent 
variables x, y and t : 

(b) Heat transfer 
The governing equation for unsteady heat 

transfer within the film is * 

~+u~+vK ay a($ +S). (7) 

Since the film is thin in comparison to its height, 
we may neglect vertical conduction using argu- 
ments similar to those of Ostrach [3], thus 
eliminating the term ~?~T/ax~ in equation (7). 

The velocity component in the y-direction, u, 
is small as compared to u, however the entire 
term u aT/ay cannot be neglected as it is of the 
same magnitude as u aT/dx. The velocity com- 
ponent u can be evaluated by substituting 
equation (6) into the equation of continuity and 
integrating to yield 

1 
“= -- 

4 d( 1 
sx Y2. 

The final form of the heat equation is 

g+[\i($Y-;Y2] 

aT 1 g aT a2T - -- 
ax 4 J( > 

- -=c(y 
vtx ay ay . (9) 

The equivalent mass diffusion problem may be 
formulated by replacing temperature T by con- 
centration C and thermal diffusivity LY by mass 
diffusivity D. 

a6 
- = $ [ jdo u +I at (4) * An anonymous reviewer pointed out that the term 

v(aTiay) should be retained in the energy equation. 
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In this work, live cases of boundary conditions 
are treated: 

Case 1: 
W,y,O) = T X>O O<UdS 

‘T(O, Y, t) = To t>O 

T(x, 0, t) = q t>o ; 2 ‘0 G 6 

T(x, 6, t) = To t>o x>o I 

(10) 

Case 2: 

T(x, Y, 0) = Ti x>o O<y<d 

T(O, Y, t) = To t>o 0 G Y G 6 
a7-/ay(~,o,t) = 0 t > 0 x>o 

(11) 

T(x, 6, t) = To t>O x>o : 

Case 3: 

7%~ Y, 0) = q x>o O<y<6 

WA Y, t) = To t>O 0 Q Y G 6 
T(x, 0, t) = To t>o x>o 

1 

(12) 

T(x, 6, t) = q t>O x>o 

Case 4 : 

T(x, Y, 0) = q x> 0 O<y<d 

WA Y, t) = To t>O 0 6 Y G 6 
T(x, 0, t) = To t>o x>o 

(13) 

aT/ay(x,6,t) = 0 t > 0 x>o i 

Case 5 : 

7(x, y, 0) = Ti x>o O<y<6 

T(O, Y, t) = To t>o O<y<6 
T(x, 0, t) = To t>o x>o 
- k aTlay (~,s,t) 

= h(T - 7J t>o x>o I 

(14) 

All cases treat the problem of heat transfer 
from a liquid lihn initially at temperature q. 
In Cases 1 and 2 the gas-liquid interface is kept 
at temperature T,. The difference between 
the two cases lies in the boundary condition at 
the wall. In Case 1 the wall is maintained 
at the initial fluid temperature Ti, while in 
Case 2 the wall is insulated. In Cases 3 and 
4 the wall is kept at temperature To. Here the 
difference between the two cases lies in the 
condition at the interface. In Case 3, the 
interface is maintained at the initial fluid tem- 
perature while in Case 4 it is insulated. Cases 3 
and 4 are of interest because they provide an 
upper and lower bound for the actual situation 

where a convective boundary condition exists. 
This condition, given as Case 5, will be treated 
separately. 

The energy equation will now be transformed 
into a dimensionless form using the following 
dimensionless variables : 

(15) 

where L is a characteristic length and Pr de- 
notes the Prandtl number. Rewriting equation 
(9) in terms of these dimensionless variables 
results in 

T2 a28 
+-1. x a (16) 

The number of independent variables appear- 
ing in equation (16) will now be reduced from 
three to two by employing a similarity variable, 
5 = r2/X. This similarity transformation is 
admissible since it satisfies the boundary con- 
ditions. 

The energy equation in the new coordinate 
system is 

$@I’ - 2Fj + 4); = $ - $2 - 3?j + 2)? 
a? 
(17) 

This equation was solved numerically for the 
five cases discussed above. 

METHOD OF SOLUTION 

Equation (17) is parabolic in 5 and although 
it is linear, it cannot be solved by known ana- 
lytical methods. Therefore, a numerical tech- 
nique was used to obtain the solution. Con- 
ventional finite difference methods such as 
Crank-Nicolson cannot be used for small c 
due to the appearance of 5 in the denominator 
of one of the terms. Therefore, the problem must 
be reformulated for this region. This is done by 
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obtaining a starting solution, which is then ex- 
tended in boundary layer coordinates until the 
entire region in q ‘senses’ the input boundary 
condition. We then revert to the regular n - 5 
coordinates for the main region. The method 
will be iilustrated in detail using Case 1 defined 
by equation (10). 

For Case 1 the boundary conditions of equa- 
tion (10) in q - 5 coordinates are 

@rl, 0) = 1 OGV-<l 
0(0,4) = 1 

: z. I 

(18) 
@(I, 5) = 0 

For the initial period (very small values of 5) 
the region of temperature variation lies close to 
q = 1. In order to start the solution we examine 
an asymptotic form of equation (17) valid for 
very small g. We substitute r] = 1 into equation 
(17) and obtain 

(19) 

We now employ a similarity variable 

which transforms equation (19) from a partial to 
an ordinary differential equation : 

d’6’ d8 
@j++;i;j;=O (21) 

with the boundary conditions 

%=0 at +=o 

f?=l at rl/ -+ CU. 

The solution of equation (21) is 

(22) 

(23) 

B = ebb = erf[s]. (24) 

Having started the solution by the use of equa- 
tion (24) we then employ the transformation of 
equation (20) as a boundary layer coordinate. 
In this system equation (17) becomes 

Equation (25) is solved numerically for incre- 
ments in 4. We return to the original q - < 
system given by equation (17) when the region 
near rl = 8 starts to drop in temperature from 
its initial value. 

Both equations (17) and (25) were solved 
numerically using the implicit Crank-Nicolson 
formulation. 

The method of solution for Case 2 is the same 
as that outlined above. For Cases 3 and 4 a 
different transformation was used since the 
input boundary condition in q was on the 
opposite side. The transformation is 

(26) 

which yields a starting solution given by 

8 = erf(g = erf(&). (27) 

RESULTS 

The results of this work were obtained by 
using an IBM 370/165 computer. 

Figures 3-5 show temperature profiles for the 
4 cases outlined above. For compactness, the 
results are given in &r~ coordinates. Recall that q 
is delined as y/S. Thus, lines of constant Q 
appear in the physical plane as a family of 
parabolas as seen in Fig. 1. The second variable, 
4, has been defined as r’/X. Thus, each of the 
Figs. 2-5 can be interpreted as a history of the 
temperature profile at a constant X. 

Comparing Cases 1 and 2 as depicted in Figs. 
2 and 3, one notes that the constant wall tem- 
perature of Case 1 brings it faster to steady state 
than in the case of the insulated wall, Case 2. 
Conversely, a superposition of temperature 
profiles for these two cases shows that for 
short times, or large distances from the leading 
edge (small Q, the two cases are identical. For 
intermediate values of & say 0.2, the part of the 
profile close to the free surface is identical, 
indicating that they are insensitive to the 
boundary condition prevailing at the wall. 

Similar observations can be made concerning 
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FIG. 2. Dimensionless temperature, 0, as a function of 

dimensionless transverse coordinate, 4, for Case 1. 
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FIG. 3. Dimensionless temperature, 8, as a function of FIG. 5. Dimensionless temperature, 0, as a function ot 

dimensionless transverse coordinate, q, for Case 2. dimensionless transverse coordinate, q, for Case 4. 
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FIG. 4. Dimensionless temperature, 8, as a function of 

dimensionless transverse coordinate, 0, for Case 3. 
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a comparison of Cases 3 and 4. However, it 
should be noted that in general, these two cases 
attain steady state faster than Cases 1 and 2. 
This is due to the fact that the velocity of the fall- 
ing film is largest in the region of the free inter- 
face where its effect is most pronounced. 

Cases 3 and 4 represent extreme cases for con- 
vective heat transfer at the free interface as 
given by 

- kg = h(T- z?) 

where Cases 3 and 4 correspond respectively to 
h -+ a and h = 0. Therefore, they provide an 
upper and lower bound to equation (28). It is 
now of interest to examine the intermediate case 
for finite values of h. 

CONVECTION AT THE FREE INTERFACE (CASE 5) 

This problem differs from the previous ones 
only by the boundary condition at the free inter- 
face as given by equation (28). 

Equation (28) can be recast in terms of the 
dimensionless variables 8 and r~ to yield 

(29) 

The variable 6 shown here is defined by equa- 
tion (5). If rewritt&n in terms of r and X, it 
becomes 

6 = (S)‘(T)’ = L(4)“- (30) 

Now X may be eliminated from equation (30) by 
substituting X = r2/5 to yield 

v2 + z + 

6= gPr ( )O r . (31) 

Substituting (31) into equation (29) results in 

-;=;[($)+]($(t?- 1) (32) 

where the expression appearing in the square 
brackets is recognized as the characteristic 
length, defined in equation (15). It is convenient 

to define a Biot number given by 

(33) 

With this Biot number, equation (32) takes on 
the simple form: 

- g = Bi ; 
0 

+ (e - 1). (34) 

Equation (34) is the dimensionless form of the 
boundary condition given by equation (29). As 
seen in the convective case both the Biot number 
and the dimensionless time r appear in the 
boundary condition. Thus, while in all previous 
cases the temperature profile was a function of q 
and l only, in the present case the temperature 
depends on q, 5, r and the parameter Bi. It 
should be noted that the field equation for this 
case still depends on two variables q and <, while 
it is through the boundary condition, that r and 
Bi enter the problem. Thus, one may consider r 
as a parameter rather than a variable for this case, 
and lump it together with Bi. The temperature 
variation is now specified as 

8 = LQ, 5, Bi Jr). (35) 

Figure 6 summarizes the computational 
results of temperature profiles for pi Jr values 
ranging from 1 to 100. The results given in this 
figure are bounded by Fig. 5, the insulated air- 
liquid interface, which corresponds to Bi \J r = 0, 
and Fig. 4, the constant temperature air-liquid 
interface corresponding to Bi Jz -+ 00. The 
plots for Bi Jr values of 1 and 100 differ only 
slightly from the respective figures mentioned 
above. Thus the set of Figs. 46, encompasses 
the entire range of Bi d I values. The curves in 
Fig. 6 are shown for various values of Bi Jr and 5. 
It is noted that with decreasing 5 the curves for 
different values of Bi ,/t tend to coincide. This 
indicates a weak dependence on Bi Jr in the 
region of small 5. 

HEAT TRANSFER DATA 

Heat transfer results are presented in dimen- 
sionless form in Figs. 7 and 8. The local heat 
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FIG. 6. Dimensionless temperature, 0, as a function of dimensionless transverse coordinate, q, for Case 5. 
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transfer rate per unit area is 

which in dimensionless form reduces to 

(37) 

Thus the local temperature gradient at the inter- 
faces is a measure of the local heat transfer rates. 

Heat transfer rates for Cases 3, 4 and 5 are 
shown in Fig. 8, Here Cases 3 and 4 constitute 
upper and lower bounds for intermediate values 
of Bi Jr. Case 3 represents the limiting case for 
Bi JT -+ cc while Case 4 represents Bi JT = 0. 

As shown in Fig. 8, at Bi Jz = 0 the dimen- 
sionless heat transfer rate approaches a value 
of zero, while that for the case of Bi Jz + CE 

converges to a value of 1. All intermediate cases 
of Bi ,/r attain heat transfer rates between these 
limits of 0 and 1. 

The dimensionless heat transfer rates are 
plotted on semi-logarithmic coordinates which 
were chosen in order to emphasize the asymptotic 
behaviour of heat transfer rates at large values of 
l. Two heat transfer rates are presented for each 
case: at the wall and at the air-liquid interface. t. 
The two rates approach each other for large ( 
indicating steady state. For the special case when 2. 

one of the boundaries is insulated, the heat flux 
at the opposite boundary approaches zero for 3. 

large <. The foregoing remarks are illustrated in 

Fig. 7, which presents heat transfer rates for 
Cases 1 and 2. 
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TRANSFERT THERMIQUE A UN FILM RUISSELANT 

R&urn&- On a ttudie le transfert thermique a un film tombant. Ce probleme est particulier puisque a la 
fois l’tpaisseur du film (l’hydrodynamique) et le protil de temperature changent en fonction du temps et 
de la position. Le probltme qui a trois variables indtpendantes, deux d’espace et une de temps, est reduit 
par une transformation de similitude a un probleme parabolique a deux dimensions. L’equation a ete 
numeriquement resolue g l’aide d’un calculateur digital pour cinq cas de conditions aux limites. 

WARMEUBERGANG AN EINEM ABLAUFENDEN FILM 

Zusammenfawmg-An einem benetzenden fallenden Film wurde der Warmetibergang untersucht. Dieses 
Problem ist eindeutig, da sowohl die Filmdicke (die Hydrodynamik) als such das Temperaturprotil sich 
mit Zeit und Ort iindern. Das urspriingliche Problem, das drei unabhlngige Variable besitzt, zwei rlumliche 
und eine zeitliche Veranderliche, wird mit Hilfe einer Ahnlichkeitstransformation reduziert auf ein 
zweidimensionales parabolisches Problem. Die Gleichung wurde numerisch mit einem Digitalrcchnei- 

gel&t und zwar fiir fiinf verschicdene Randbedingungen. 

IIEPEHOC TEIIaA Ic IIAjIAIOIIIEtl IIJIIIEHHI: 

AHHoTaqnsI-MccneAoBancR nepeHoc Terma fE nagaromeii u.neniie. %a aaAaqa ymii~aJrbua, 
IIOTOMy YTO, KaK TOJImKHa IIJIeHIFH (IW~pOAHHaMLWa), TaIi Ii IIpOI@Ib TeMIIepaTyp II:INt'- 

HFIIOTCR B npocTpaHcTBe II npeMeHa. kkxoRHan aanasa, ISNIWIaEO~aH Tpll He3aUfiiCIIMhIX 

IIepeMeHHbIX, EBe BejlWIllHbI, H3MeHRIOlI&IeCR B IIpOCTpaHCTBe, II ORHy, 1WMeHJWJIQyIOCfl 

BO BpeMeHH,. CBOAATCfl C IIOMOmbIo aBTOMOAeJIbHbIX IIpeO6paaOBaHHti tE CIRJ’MepHO6i IIa[‘“- 
Bomsec~oii aafiaqe. Ypanuenne pemaercn qIiC."eHHO Ha ~kI@pOBOli BbIsI~CnIlTe.~bIfOii 

‘MaUIllHe InH IIHTH CnysaeB rpaHkIYHblX yCJIOBLlfi. 


